我院梁超教授与南开大学李明教授、北京大学刘兴中博士后合作研究论文A Closing Lemma for Non-uniformly Hyperbolic Singular Flows发表在Communications in Mathematical Physics(JCR分区Q1)。论文探讨了非一致双曲带奇流的封闭引理及其应用。周期轨道是动力系统中最简单的回复性子系统,对于理解全局动力学具有重要意义。然而,有些系统没有周期轨道,比如圆上的无理旋转。这引发了各种研究,包括周期点的存在性以及周期轨道数量的测量(例如,周期轨数量的渐近指数增长率)和动力系统的扰动理论。一个相关的经典问题是:
If the positive orbit of a point comes back very close to the initial point, is it possible to close it, creating a periodic orbit, by the original system or a small perturbation of the system?
对于某些系统,这个问题的肯定回答被称为封闭引理。封闭引理在1960年代首次在C^1拓扑下提出,有两个拓扑版本:Anosov类型是对原系统考察周期轨的情况,Pugh类型是对扰动系统讨论周期轨情况。我们的工作是属于前一类,针对可能带奇点的非一致双曲系统来建立封闭引理。因奇点的存在性和双曲性的非一致性,此项工作有较大的难度。
下载链接:https://doi.org/10.1007/s00220-024-05045-z
论文题目:A Closing Lemma for Non-uniformly Hyperbolic Singular Flows
英文摘要:In this paper, we combine the profound Pesin theory with the sophisticated
approach for addressing singular flows devised by Liao and prove a closing lemma
for C^{1+α} non-uniform hyperbolic singular flows. As an application, we prove that every
ergodic hyperbolic measure which is not supported on singularities can be approximated
by periodic measures.
撰稿人:梁超
审稿人:邓露