学校主页 加入收藏 English
当前位置: 首页 >> 师资团队 >> 教师队伍 教授
杨玥含
 
发布时间:2015年01月06日    点击次数: 次    更新日期:2024年09月14日

杨玥含 教授,硕士生导师、青年龙马学者,统计学学士、博士 Email: yyh@cufe.edu.cn

研究方向 复杂数据建模,因果推断,迁移学习,资产配置

工作经历与教育背景

2023年12月-至今 中央财经大学统计与数学学院,教授

2020年11月-2023年12月 中央财经大学统计与数学学院,副教授

2014年7月-2020年11月 中央财经大学统计与数学学院,讲师

2009年9月-2014年7月 北京大学应用数学专业,获博士学位

2005年9月-2009年7月 重庆大学统计学专业,获学士学位

所授课程

统计软件(本科生),统计学(本科生),统计计算(研究生),论文写作指导(博士)

著作

《金融大数据统计方法与实证》,2016,科学出版社

《金融大数据统计方法与实证配套课件及R程序》,2018,科学出版社

《非负模型选择理论及应用》,2022,中国财政经济出版社

教学、学术奖励

中央财经大学“鸿基世业”优秀学术论文奖

成心优秀实践教学奖

课题

《多重结构数据的多模型/无模型统计分析与因果推断》,国家自然科学基金面上项目,课题负责人,2024.01-2027.12

《大数据驱动的模型分析与最优决策研究》,中央财经大学青年科研创新团队,课题负责人,2023.06 - 2026.06

《高维相关数据分层估计与迭代筛选方法研究及金融实证》,国家自然科学基金青年项目,课题负责人,2021.01-2023.12

《基于“以学为中心”理念的《现代统计软件》教学方法研究和实践》,中央财经大学教学方法研究项目,课题负责人,2022.06-2024.06

《复杂相关数据的筛选建模与金融实证分析》,中央财经大学“青年英才”培育支持计划,课题负责人,2021.06-2023.06

《基于模型选择的有约束统计推断理论及金融大数据分析》,国家自然科学基金面上项目,第一主研,已结项

《罚项约束的模型选择理论及相关问题研究》,中央财经大学青年教师发展基金,课题负责人,已结项

研究生(本科生)科研指导

1.个人状态:对科研有兴趣,在已有的课程中学有余力,计划或确定在本校读研,在本科后半程或即将的研究生阶段开展学术研究。

2.课程基础:熟悉统计学、熟练使用 R or Python or Matlab。

以上,欢迎找我唠嗑。学术是综合的领域,包含文献学习、思考推导、数值分析、英文写作等等,它们需要的不是天赋,而是投入。

科研代表作:Publications on the top journals(*corresponding author)(#student)

1.Hanzhong Liu, Jiyang Ren# and Yuehan Yang*, Randomization-based joint central limit theorem and efficient covariate adjustment in stratified 2^K factorial experiments.Journal of the American Statistical Association,2024,119(545), 136-150. (One ofTop 4Statistical Journals)

2.Hanzhong Liu and Yuehan Yang*, Regression-adjusted average treatment effect estimates instratified randomized experiments, Biometrika, 2020,107(4):935-948.(One ofTop 4Statistical Journals)

3.Ke Zhu#, Hanzhong Liu and Yuehan Yang*, Design-based theory for Lasso adjustment in randomized block experiments and rerandomized experiments, Journal of Businessand Economics Statistics, 2024, in press. (Top Journal in Statistics and Economics)

4.Shun Yu# and Yuehan Yang*, Structured iterative division approach for non-sparse regression models and applications in biological data analysis. Statistical Methods in Medical Research, 2024, 33(7), 1233-1248. (Statistics, Q1).

5.Yuqi Zhang# and Yuehan Yang*, Joint estimation for multisource Gaussian graphical models based on transfer learning. Pattern Recognition, 2025, 158, 110964. (Computer Science, Q1)

6.Zixuan Zhao# and Yuehan Yang*, Nonconvex Fusion Penalties for High-dimensional Hierarchical Categorical Variables. Information Sciences,2024, 680 (2024) 121143.. (Computer Science, Q1)

7.Siwei Xia and Yuehan Yang*, A model-free feature selection technique of feature screening and random forest based recursive feature elimination.International Journal of Intelligent Systems, 2023, 2400194. (Computer Science, Q1)

8.Yuehan Yang*, Dimension reduction of high-dimension categorical data with two or multiple responses regarding the interactions between responses.Expert Systems With Applications, 2023, 221:119753. (Computer Science, Q1)

9.Yimiao Gao# and Yuehan Yang*, Transfer learning on stratified data: joint estimation transferred from strata.Pattern Recognition, 2023, 140:109535.(Computer Science, Q1)

10.SiweiXia and Yuehan Yang*, An iterative model-free feature screening procedure: forward recursive selection by random forest, Knowledge-Based Systems, 2022, 246:108745. (Computer Science, Q1)

11.Xingyu Chen# and Yuehan Yang*, Local linear approximation with Laplacian smoothing penalty and application in biology.Statistical Methods in Medical Research, 2023, 32(6): 1145-1158. (Statistics, Q1)

12.Fan Yang#, Zhanyang Li#, Yushan Xue, and Yuehan Yang*, A penalized least product relative error loss function based on wavelet decomposition for nonparametric multiplicative additive models.Journal of Computational and Applied Mathematics,2023,432:115299. (Mathematics, Q1)

13.Siwei Xia#, Yuehan Yang# and Hu Yang*, High-dimensional Sparse Portfolio Selection with Nonnegative Constraint.Applied Mathematics and Computation, 2023,443:127766. (Mathematics, Q1)

14.Yuehan Yang and Hu Yang*, Adaptive and reversed penalty for analysis ofhigh-dimensional correlated data, Applied Mathematical Modelling, 2021, 92:63-77.(Mathematics, Q1)

15.Yuehan Yang*, Ji Zhu and E. George, MuSP: A Multi-step Screening Procedure for Sparse Recovery,Stat, 2021,10:1-19.(Statistics,Q1,This paper is listed on the Stat Sample Issue as representative of high-dimensional analysis.)

16.Yuehan Yang* and Ji Zhu, A two-step method for estimating high-dimensional Gaussian graphical models. Science China Mathematics, 2020, 63(6):1203-1218. (Mathematics, Top journal)

17.Lan Wu and Yuehan Yang*, Nonnegative Elastic Net and application in index tracking. Applied Mathematics and Computation, 2014, 227:541-552. (Mathematics, Q1)

Published or Accepted (*corresponding author)(#student)

1.Xinyu Dong#, Ziyi Lin, Ziyi Cai and Yuehan Yang*, Adaptive analysis of the heteroscedastic multivariate regression modeling. Journal of Statistical Computation and Simulation, 2024, in press.

2.Yuqi Zhang# and Yuehan Yang*, Joint estimation for multisource Gaussian graphical models based on transfer learning. Pattern Recognition, 2025, 158, 110964.

3.Shun Yu# and Yuehan Yang*, Structured iterative division approach for non-sparse regression models and applications in biological data analysis. Statistical Methods in Medical Research, 2024, 33(7), 1233-1248.

4.Ke Zhu#, Hanzhong Liu and Yuehan Yang*, Blocking, rerandomization, and regression adjustment in randomized experiments with high-dimensional covariates,Journal of Business and Economic Statistics, in press.

5.Weixiong Liang# and Yuehan Yang*, A sequential stepwise screening procedure for sparse recovery in high-dimensional multiresponse models with complex group structures, Statistics and Its Interface, in press.

6.Yaxuan Zhao# and Yuehan Yang*, A robust estimation based on penalized regularization for the varying-coefficient additive model, Journal of Nonparametric Statistics, in press.

7.Zixuan Zhao# and Yuehan Yang*, Nonconvex Fusion Penalties for High-dimensional Hierarchical Categorical Variables. Information Sciences,2024, 680 (2024) 121143.

8.Zhaoyang Li# and Yuehan Yang*, A semi-orthogonal nonnegative matrix tri-factorization algorithm for overlapping community detection, Statistical Papers, 2024, 65:3601–3619.

9.Rui Chen#, Erbo Li#, Yushan Xue, and Yuehan Yang*, Spectral feature selection with the Graphical Lasso estimator for ultra-high dimensional Gaussian graphical models. Statistics and Its Interface, in press.

10.Fan Yang# and Yuehan Yang*, A sparse estimate based on variational approximations for semiparametric generalized additive models, Computational Statistics, 2024, 39:1971-1992.

11.Hanzhong Liu, Jiyang Ren# and Yuehan Yang*, Randomization-based joint central limit theorem and efficient covariate adjustment in stratified 2^K factorial experiments.Journal of the American Statistical Association, 2024,119(545), 136-150.

12.Yuanyuan Cao#, Hongying Li# and Yuehan Yang*, Combining random forest and multicollinearity modeling for index tracking. Communications in Statistics - Simulation and Computation,2024, 53, 3868-3879.

13.ZhaoyangLi# and Yuehan Yang*, Directed association network analysis on the Standard & Poor's 500 Index.Computational Economics,2024, 63:111-127.

14.Yimiao Gao# and Yuehan Yang*, A joint estimation for the high-dimensional regression modeling on stratified data. Communications in Statistics - Simulation and Computation,2023,52(12): 6129-6140.

15.Zhaoyang Li# and Yuehan Yang*, Structurally incoherent adaptive weighted low-rank matrix decomposition for image classification, Applied Intelligence, 2023, 53:25028-25041.

16.Jia Xing#, Binghui Li# and Yuehan Yang*, Community detection and clustering characteristics analysis of the stock market. Managerial and Decision Economics, 2023, 44:3893-3906.

17.Siwei Xia and Yuehan Yang*, A model-free feature selection technique of feature screening and random forest based recursive feature elimination. International Journal of Intelligent Systems, 2023, 2400194.

18.Xingyu Chen# and Yuehan Yang*, Local linear approximation with Laplacian smoothing penalty and application in biology.Statistical Methods in Medical Research, 2023, 32(6): 1145-1158.

19.Yanan Yan# and Yuehan Yang*, Community detection for New York stock market by SCORE-CCD. Computational Statistics, 2023,38:1255-1282.

20.Fan Yang#, Zhanyang Li#, Yushan Xue and Yuehan Yang*, A penalized least product relative error loss function based on wavelet decomposition for nonparametric multiplicative additive models.Journal of Computational and Applied Mathematics,2023,432,115299.

21.Xingyu Chen# and Yuehan Yang*, An iterative algorithm with adaptive weights and sparse Laplacian shrinkage for regression problems. Statistics and Its Interface, 2023,16:433-443.

22.Yimiao Gao# and Yuehan Yang*, Transfer learning on stratified data: joint estimation transferred from strata. Pattern Recognition, 2023, 140:109535.

23.Yuehan Yang*, Dimension reduction of high-dimension categorical data with two or multiple responses regarding the interactions between responses.Expert Systems With Applications, 2023, 221:119753.

24.Siwei Xia#, Yuehan Yang# and Hu Yang*, High-dimensional Sparse Portfolio Selection with Nonnegative Constraint.Applied Mathematics and Computation, 2023,443:127766.

25.Yuehan Yang, Siwei Xia# and Hu Yang*, Multivariate sparse laplacian shrinkage for joint estimation of two graphical network structures, Computational Statistics & Data Analysis, 2023, 178:107620.

26.Yuehan Yang and Siwei Xia#, An integrated precision matrix estimation for multivariate regression problems. Journal of Statistical Planning and Inference, 2023, 222:261-272.

27.Binghui Li# and Yuehan Yang*, Undirected and directed network analysis of the Chinese stock market.Computational Economics, 2022, 60:1155-1173.

28.Siwei Xia# and Yuehan Yang*, An iterative model-free feature screening procedure: forward recursive selection by random forest, Knowledge-Based Systems, 2022, 246:108745.

29.Siwei Xia#,Yuehan Yang and Hu Yang*, Sparse Laplacian shrinkage with the graphical lasso estimator for regression problems, TEST, 2022, 31:255-277.

30.Wenjun Cao#, Lisu Wang# and Yuehan Yang*, Multiple penalized regularization for clusters with varying correlation levels. Statistics and Its Interface, 2022, 15:373-382.

31.Yuehan Yang*, Ji Zhu and E. George, MuSP: A Multi-step Screening Procedure for Sparse Recovery,Stat, 2021,10(1):1-19.

32.Yuehan Yang* and Hu Yang,Rates of Convergence of the Adaptive Elastic Net and the Post-selection Procedure in Ultra-high Dimensional Sparse Models. Communications in Statistics Theory and Methods, 2021,50(1):73-94.

33.Tianchen Gao#, Yan Zhang#, Siyu Wang#,Yuehan Yang and Rui Pan*,Community detection for statistical citation network by D-SCORE, Statistics and Its Interface, 2021,14:279-294.

34.Yuehan Yang and Hu Yang*,Adaptive and reversed penalty for analysis ofhigh-dimensional correlated data, Applied Mathematical Modelling, 2021, 92:63-77.

35.Hanzhong Liu and Yuehan Yang*, Regression-adjusted average treatment effect estimates instratified randomized experiments, Biometrika, 2020,107(4):935-948.

36.Yuehan Yang* and Ji Zhu, A two-step method for estimating high-dimensional Gaussian graphical models. Science China Mathematics, 2020, 63(6):1203-1218.

37.Yuehan Yang* and Lan Wu, A significance test for the elastic net and its asymptotic distribution with general predictors (in Chinese). Science China Mathematics, 2019,49:1119-1138.

38.Yuehan Yang* and Hu Yang, Model selection consistency of lasso for empirical data. Chinese Annals of Mathematics Series B, 2018, 39(4):607-620.

39.Yuehan Yang* and Lan Wu, Nonnegative adaptive lasso for ultra-high dimensional regression models and a two-stage method applied in financial modeling. Journal of Statistical Planning and Inference, 2016, 174:52-67.

40.Lan Wu,Yuehan Yang* and Hanzhong Liu, Nonnegative-lasso and application in index tracking. Computational Statistics and Data Analysis, 2014, 70:116-126.

41.Lan Wu and Yuehan Yang*, Nonnegative Elastic Net and application in index tracking. Applied Mathematics and Computation, 2014,227:541-552.

部分会议邀请报告与境外访问:

2024年12月,访问英国伦敦大学学院

2024年1月,访问澳大利亚国立大学

2024年,澳大利亚 IMS APRM会议,分会主席/邀请报告

2023年,重庆市工业与应用数学学会第九届年会,大会报告

2022年,2023年,海淀医院,邀请报告

2019年,荷兰统计会议

2017年1-2月,访问密歇根大学(期间应邀顺访斯坦福大学)

2018年,2019年,2023年,2024年泛华统计协会国际会议,分会主席/邀请报告

2017年,北大金融数学系20周年系庆系列讲座,北京大学,邀请报告

2015年,2017年,2019年,IMS-China概率统计大会,分会主席/邀请报告

上一条:杨凤红

下一条:殷先军

师资团队

          版权所有:中央财经大学统计与数学学院  
          地址:北京市昌平区沙河高教园中央财经大学沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号