学校主页 加入收藏 English
当前位置: 首页 >> 通知公告 >> 正文 通知公告
龙马统数·见微知著大讲堂第77讲:Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces
来源:  点击次数: 次 发布时间:2024-10-09   编辑:统计与数学学院

学术报告:Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces

报告时间:10月24日(星期四)上午10:00-11:30

报告地点:沙河校区,学院1号楼102会议室

报告人:潘文亮,中国科学院数学与系统科学研究院,副研究员

报告摘要:The distribution function is essential in statistical inference and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradigm for statistical inference. However, existing distribution functions are defined in Euclidean spaces and are no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of the distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space. Still, without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric only.We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces, laying the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop a homogeneity test and a mutual independence test for non-Euclidean random objects and present comprehensive empirical evidence to support the performance of our proposed methods.

报告人简介:现任中国科学院数学与系统科学研究院副研究员及博士生导师,专注于统计学习算法、医学图像数据分析和度量空间的非参数方法等领域研究。在Annals of Statistics、Journal of the American Statistical Association等统计学顶级杂志上发表了20篇以上学术论文,获得2022年教育部高等学校科学研究优秀成果自然科学类二等奖(排名第二)。主持的科研项目涵盖国家自然科学基金委优秀青年基金、面上项目、青年基金等。同时,担任北京生物医学统计与数据管理研究会副理事长,以及中国现场统计研究会统计交叉科学研究分会副秘书长。

撰稿人:刘洁

审稿人:邓露

首页

          版权所有:中央财经大学统计与数学学院  
          地址:北京市昌平区沙河高教园中央财经大学沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号