学术报告:Subsampling spectral clustering for stochastic block models in large-scale networks
报告时间:2023年11月22日(星期三)下午14:00-15:00
报告地点:沙河校区,二教108
报告人:黄丹阳,中国人民大学统计学院,教授
报告摘要:The rapid development of science and technology has generated large amounts of network data, leading to significant computational challenges for network community detection. A novel subsampling spectral clustering algorithm is proposed to address this issue, which aims to identify community structures in large-scale networks with limited computing resources. The algorithm constructs a subnetwork by simple random subsampling from the entire network, and then extends the existing spectral clustering to the subnetwork to estimate the community labels for entire network nodes. As a result, for large-scale datasets, the method can be realized even using a personal computer. Moreover, the proposed method can be generalized in a parallel way. Theoretically, under the stochastic block model and its extension, the degree-corrected stochastic block model, the theoretical properties of the subsampling spectral clustering method are correspondingly established. Finally, to illustrate and evaluate the proposed method, a number of simulation studies and two real data analyses are conducted.
报告人简介:中国人民大学统计学院教授,博士生导师,应用统计科学研究中心研究员,中国现场统计研究会教育统计与管理分会常务理事,北京大数据协会理事会副秘书长,常务理事。主持国家自然科学基金等多项省部级及以上课题,入选北京市科协青年人才托举工程,曾获北京市优秀人才培养资助。长期从事复杂网络建模、超高维数据分析、分布式计算等方向的理论研究工作,注重统计理论研究在小微企业数字化发展中的实际应用。在Journal of the Royal Statistical Society:Series B (Statistical Methodology),Journal of Econometrics, Journal of Business & Economic Statistics等国内外权威期刊发表论文30余篇,著有教材一部,独立作者专著一部。
本次活动受中央财经大学专题学术讲座资助计划支持