学术报告:Statistical Inference for stable asymmetric GARCH models
报告时间:2023年11月3日(星期五)下午14:00-15:00
报告地点:沙河校区,二教205
报告人:李东,清华大学统计学研究中心,副教授
报告摘要:Heavy-tailed phenomena are ubiquitous in the real world and are often observed in almost all scientific fields. The paper develops entire statistical inference for an asymmetric generalized autoregressive conditional heteroskedasticity model with standardized non-Gaussian symmetric α-stable innovation (sAGARCH) in a unified framework of stationary and explosive cases. The paper first considers the maximum likelihood estimation of the model with its asymptotics, including the stable exponent parameter in the innovation jointly. A modified Kolmogorov-type test statistic is then proposed for diagnostic checking, as well as test statistics for strict stationarity and asymmetry testing. Monte Carlo simulation studies are conducted to examine the finite-sample performance of our entire statistical inference procedure. Empirical examples of stock return series are analyzed to illustrate the usefulness and merits of our sAGARCH model.
报告人简介:李东,清华大学统计学研究中心(长聘)副教授,2010年12月毕业于香港科技大学,2013年9月加入清华大学。主要从事复杂时间序列的统计分析,非欧数据分析,空间统计,网络数据分析,机器学习,金融计量学等方面的研究。在统计学和计量统计学杂志上共发表研究论文40余篇。目前担任中国数学会概率统计分会常务理事,北京大数据协会常务理事,北京应用统计学会理事等;曾任全国工业统计学教学研究会常务理事、中国数学会概率统计分会副秘书长等。
本次活动受中央财经大学专题学术讲座资助计划支持