学校主页 加入收藏 English
当前位置: 首页 >> 通知公告 >> 正文 通知公告
龙马统数·见微知著大讲堂第47讲:Test and Measure for Partial Mean Dependence Based on Machine Learning Methods
  点击次数: 次 发布时间:2023-09-14   编辑:统计与数学学院

报告题目:Test and Measure for Partial Mean Dependence Based on Machine Learning Methods

时间:2023年9月28日(星期四)下午14:00-15:00

地点:沙河校区,二教205

报告人:郭旭,北京师范大学统计学院,教授

摘要:It is of importance to investigate the significance of a subset of covariates $W$ for the response $Y$ given covariates $Z$ in regression modeling. To this end, we propose a significance test for the partial mean independence problem based on machine learning methods and data splitting. The test statistic converges to the standard chi-squared distribution under the null hypothesis while it converges to a normal distribution under the fixed alternative hypothesis. Power enhancement and algorithm stability are also discussed. If the null hypothesis is rejected, we propose a partial Generalized Measure of Correlation (pGMC) to measure the partial mean dependence of $Y$ given $W$ after controlling for the nonlinear effect of $Z$. We present the appealing theoretical properties of the pGMC and establish the asymptotic normality of its estimator with the optimal root-$N$ convergence rate. Furthermore, the valid confidence interval for the pGMC is also derived. As an important special case when there are no conditional covariates $Z$, we introduce a new test of overall significance of covariates for the response in a model-free setting. Numerical studies and real data analysis are also conducted to compare with existing approaches and to demonstrate the validity and flexibility of our proposed procedures.

报告人简介:郭旭,北京师范大学统计学院教授,博士生导师。郭老师一直从事回归分析中复杂假设检验的理论方法及应用研究,近年来皆在对高维数据发展适当有效的检验方法。部分成果发表在JRSSB, JASA,Biometrika和JOE。担任《应用概率统计》杂志第十届编委。现主持国家自然科学基金优秀青年基金。曾荣获北师大第十一届“最受本科生欢迎的十佳教师”和北师大第十八届青教赛一等奖。

本次活动受中央财经大学专题学术讲座资助计划支持

首页

          版权所有:中央财经大学统计与数学学院  
          地址:北京市昌平区沙河高教园中央财经大学沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号