学校主页 加入收藏 English
当前位置: 首页 >> 通知公告 >> 正文 通知公告
中央财经大学统计与数学学院双周学术报告会(三十七)
  点击次数: 次 发布时间:2019-10-21   编辑:统计数学学院

时间:20191023(星期三)14:00-15:30

地点:学院南路校区,主教101

报告题目:Time-varying Model Averaging

报告人:孙玉莹中国科学院数学与系统科学研究院

报告摘要:Structural changes often occur in economics and finance due to changes in preferences, technologies, institutional arrangements, policies, crises, etc. Improving forecast accuracy of economic time series with structural changes is a long-standing problem. Model averaging aims at providing an insurance against selecting a poor forecast model. All existing model averaging approaches in the literature are designed with constant (non-time-varying) combination weights. Little attention has been paid to time-varying model averaging, which is more realistic in economics under structural changes. This paper proposes a novel model averaging estimator which selects optimal time-varying combination weights by minimizing a local jackknife criterion. It is shown that the proposed time-varying jackknife model averaging (TVJMA) estimator is asymptotically optimal in the sense of achieving the lowest possible local squared error loss in a class of time-varying model averaging estimators. Under a set of regularity assumptions, the TVJMA estimator is root-Th consistent. A simulation study and an empirical application highlight the merits of the proposed TVJMA estimator relative to a variety of popular estimators with constant model averaging weights and model selection.

报告人简介:

报告题目:A two-step method for interval-valued crude oil price forecasting

报告人:黄白、中央财经大学统计与数学学院

报告摘要:As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. The current studies ignore the extreme nature of the lower and upper bounds of crude oil price. We propose a two-step forecasting procedure that uses two techniques to consider the relevant information available in the interval format. First, we extend the L 2 Boosting by Bühlmann (2006) to the interval-valued data to achieve variable selection for high-dimensional data. Second, a leave-subject-out cross-validation model averaging (LsoMA) method by Liao et al. (2019) is extended to average predictions from interval models with interval-valued exogenous variables. The empirical results show that our proposed approach significantly outperforms the benchmark models in terms of both forecasting accuracy and robustness analysis.

本次活动受中央财经大学2019专题学术讲座项目资助。

首页

          版权所有:中央财经大学统计与数学学院  
          地址:北京市昌平区沙河高教园中央财经大学沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号